You have 1 free story left this month. Sign up and get an extra one for free.

The Ultimate Beginner’s Guide to
NumPy

Everything you need to know to get started with NumPy

7 TN Anne Bonner

e, Nov17,2019 - 35 min read *

-

Photo by Skitterphoto from Pexels

The world runs on data and everyone should know how to work with
it.

It’s hard to imagine a modern, tech-literate business that doesn’t use data
analysis, data science, machine learning, or artificial intelligence in some

form. NumPy is at the core of all of those fields.

While it’s impossible to know exactly how many people are learning to
analyze and work with data, it’s a pretty safe assumption that tens of
thousands (if not millions) of people need to understand NumPy and how
to use it. Because of that, I've spent the last three months putting together
what I hope is the best introductory guide to NumPy yet!

If there’s anything you want to see included in this tutorial, please
leave a note in the comments or reach out any time!

Want to see this tutorial on NumPy? Take a look!

A little background:

I was selected by NumPy through Google Season of Docs to create an
introductory NumPy tutorial for absolute beginners. It’s been fascinating
seeing all of the behind-the-scenes action and working with some of the key
players. I've had the opportunity to dig through the existing documentation
and see how things work at every level connected with this project. I've also
had the chance to work some other great writers who have been working
hard on the documentation at SciPy.

If you're interested in getting involved with NumPy or Google Season of
Docs, I highly recommend it. If you’re new to open source projects, you
might have a bit of a learning curve setting up your workstation, becoming
familiar with NumPy’s contribution guidelines, and getting to know the ins
and outs of .rst and Sphinx, but it’s so worth it. It’s definitely challenging if
you haven’t done it before, but keep going. Once you get those details
nailed down, you can start having real fun!

Always remember: the people behind NumPy and SciPy are excellent,
and they want you to succeed.

Feel free to take a look at the pull request for the absolute beginner’s
tutorial on GitHub to get a sense of the process and everything involved in
making a successful NumPy documentation change. If you want to read
through the tutorial, just keep scrolling for a Medium-friendly version!
Otherwise, you can find a permanent copy of the documentation on
GitHub.

If you’ve never worked with Git and GitHub before, you might want to
check out this tutorial!

Getting started with Git and GitHub: the complete beginner's
guide

Git and GitHub basics for the curious and completely confused (plus the
easiest way to contribute to your first open...

towardsdatascience.com

If you’re new to data analysis, this one’s for you.

Photo by Lucas Pezeta from Pexels

The Absolute Beginner's Guide to NumPy

Photo by Adrienn from Pexels

If you're having trouble installing Anaconda, you might want to take a look
at this article:

How to Successfully Install Anaconda on a Mac (and Actually Get
it to Work)

A quick and painless guide for installing Anaconda correctly and fixing the
dreaded "conda command not found” error

towardsdatascience.com

How to import NumPy

Any time you want to use a package or library in your code, you first need to

make it accessible.

In order to start using NumPy and all of the functions available in NumPy,
you’ll need to import it. This can be easily done with this import statement:

import numpy as np

(We shorten “numpy” to “np” in order to save time and also to keep code
standardized so that anyone working with your code can easily understand

and run it.)

What's the difference between a Python list and
a NumPy array?

NumPy gives you an enormous range of fast and efficient numerically-
related options. While a Python list can contain different data types within
a single list, all of the elements in a NumPy array should be homogenous.
The mathematical operations that are meant to be performed on arrays
wouldn’t be possible if the arrays weren’t homogenous.

Why use NumPy?

‘A_r_

Welcome to NumPy!

NumPy (Numerical Python) is an open-source Python library that’s used in
almost every field of science and engineering. It’s the universal standard for
working with numerical data in Python, and it’s at the core of the scientific
Python and PyData ecosystems. NumPy users include everyone from
beginning coders to experienced researchers doing state-of-the-art
scientific and industrial research and development. The NumPy API is used
extensively in Pandas, SciPy, Matplotlib, scikit-learn, scikit-image and most
other data science and scientific Python packages.

The NumPy library contains multidimensional array and matrix data
structures (you’ll find more information about this in later sections). It
provides ndarray, a homogeneous n-dimensional array object, with
methods to efficiently operate on it. NumPy can be used to perform a wide
variety of mathematical operations on arrays. It adds powerful data
structures to Python that guarantee efficient calculations with arrays and
matrices and it supplies an enormous library of high-level mathematical
functions that operate on these arrays and matrices.

Learn more about NumPy here!

is GIF no longer exists! Looking for more GIFs?

gif via giphy

Installing NumPy

To install NumPy, I strongly recommend using a scientific Python
distribution. If you’re looking for the full instructions for installing NumPy
on your operating system, you can find all of the details here.

If you already have Python, you can install NumPy with
conda install numpy

or
pip install numpy

If you don’t have Python yet, you might want to consider using Anaconda.
It’s the easiest way to get started. The good thing about getting this
distribution is the fact that you don’t need to worry too much about
separately installing NumPy or any of the major packages that you'll be
using for your data analyses, like pandas, Scikit-Learn, etc.

If you need more details about installation, you can find all of that

information at scipy.org.

Photo by Pixabay from Pexels

NumPy arrays are faster and more compact than Python lists. An array
consumes less memory and is far more convenient to use. NumPy uses
much less memory to store data and it provides a mechanism of specifying
the data types, which allows the code to be optimized even further.

What is an array?

An array is a central data structure of the NumPy library. It’s a grid of values
and it contains information about the raw data, how to locate an element,
and how to interpret an element. It has a grid of elements that can be
indexed in various ways. The elements are all of the same type, referred to
as the array dtype (data type).

An array can be indexed by a tuple of nonnegative integers, by booleans, by
another array, or by integers. The rank of the array is the number of
dimensions. The shape of the array is a tuple of integers giving the size of
the array along each dimension.

One way we can initialize NumPy arrays is from nested Python lists.
a = np.array([[1 , 2, 3, 4], [5, 6, 7, 81, [9, 10, 11, 12]1)

We can access the elements in the array using square brackets. When you're
accessing elements, remember that indexing in NumPy starts at 0. That
means that if you want to access the first element in your array, you’ll be

accessing element “0”.

print(a[0])
Output:

(12 3 4]

More information about arrays

1D array, 2D array, ndarray, vector, matrix

You might occasionally hear an array referred to as a “ndarray,” which is
shorthand for “N-dimensional array.” An N-dimensional array is simply an
array with any number of dimensions. You might also hear 1-D, or one-
dimensional array, 2-D, or two-dimensional array, and so on. The NumPy
ndarray class is used to represent both matrices and vectors. A vector is an
array with a single column, while a matrix refers to an array with multiple
columns.

What are the attributes of an array?

An array is usually a fixed-size container of items of the same type and size.
The number of dimensions and items in an array is defined by its shape. The
shape of an array is a tuple of non-negative integers that specify the sizes of

each dimension.

In NumPy, dimensions are called axes. This means that if you have a 2D
array that looks like this:

Your array has 2 axes. The first axis has a length of 2 and the second axis
has a length of 3.

To create a NumPy array, you can use the function np.array().
All you need to do to create a simple array is pass a list to it. If you choose

to, you can also specify the type of data in your list. You can find more
information about data types here.

import numpy as np

a = np.array([1l, 2, 31)

You can visualize your array this way:

Command NumPy Array
1
np.array([1,2,3]) * 2
3

Besides creating an array from a sequence of elements, you can easily create
an array filled with Os:

Input:

np.zeros(2)

Output:

array([0., 0.1)

Or an array filled with 1s:

Input:

np.ones (2)

Output:

array([1., 1.])

Or even an empty array! The function empty creates an array whose initial
content is random and depends on the state of the memory.

Input:

Create an empty array with 2 elements
np.empty (2)

You can create an array with a range of elements:

Input:

np.arange (4)

Output:

array ([0, 1, 2, 3])

And even an array that contains a range of evenly spaced intervals. To do
this, you will specify the first number, last number, and the step size.

Input:

np.arange (2,9, 2)

Output:

Just like in other Python container objects, the contents of an array can be
accessed and modified by indexing or slicing the array. Different arrays can
share the same data, so changes made on one array might be visible in

another.
Array attributes reflect information intrinsic to the array itself. If you need
to get, or even set, properties of an array without creating a new array, you

can often access an array through its attributes.

Read more about array attributes here and learn about array objects here.

7
Y

o
’U‘*
Ui

”

This GIF no longer exists! Looking for more GIFs?

Check out Giphy's homepage for the most
popular GIFs on the Internet.

gif via GIPHY

How to create a basic array

np.array ()
np.zeros ()
np.ones ()
np.empty ()
np.arange ()
np.linspace ()
dtype

You can also use np.linspace() to create an array with values that are
spaced linearly in a specified interval:

Input:

np.linspace (0,10,5)

Output:
array([0. , 2.5, 5., 7.5, 10. 1)
Specifying your data type

While the default data type is floating point (float64), you can explicitly
specify which data type you want using dtype.

Input:

array = np.ones (2, dtype=int)
array

Output:

array ([1, 1])

Learn more about creating arrays here.

Photo by Godisable Jacob from Pexels

Adding, removing, and sorting elements

np.append ()
np.delete ()
np.sort ()

If you start with this array:
arr = np.array([1l, 2, 3, 4, 5, 6, 7, 81])

You can add elements to your array any time with np.append(). Make sure
to specify the array and the elements you want to include.

Input:
np.append (arr, [1,2])

Output:

You can delete an element with np.delete(). If you want to delete the

element in position 1 of your array, you can run:

Input:

np.delete(arr, 1)

Read more about appending an array here and deleting elements here.
Sorting an element is simple with np.sort(). You can specify the axis, kind,
and order when you call the function. Read more about sorting an array

here.

If you start with this array:
arr = np.array([2, 1, 5, 3, 7, 4, 6, 8])

You can quickly sort the numbers in ascending order with:

Input:
np.sort (arr)

Output:

In addition to sort, which returns a sorted copy of an array, you can use:
argsort, which is an indirect sort along a specified axis, lexsort, which is an
indirect stable sort on multiple keys, searchsorted, which will find
elements in a sorted array, and partition, which is a partial sort.

How do you know the shape and size of an array?

ndarray.ndim()
ndarray.size ()
ndarray.shape ()

ndarray.ndim will tell you the number of axes, or dimensions, of the array.

ndarray.size will tell you the total number of elements of the array. This is
the product of the elements of the array’s shape.

ndarray.shape will display a tuple of integers that indicate the number of
elements stored along each dimension of the array. If, for example, you
have a 2D array with 2 rows and 3 columns, the shape of your array is (2,3).

For example, if you create this array:

array example = np.array([[[0, 1, 2, 3]
4

To find the number of dimensions of the array, run:

Input:

array example.ndim

Output:

To find the total number of elements in the array, run:

Input:

array example.size

Output:

24

want to produce needs to have the same number of elements as the original
array. If you start with an array with 12 elements, you’ll need to make sure
that your new array also has a total of 12 elements.

If you start with this array:

a = np.arange (6)
print (a)

Output:

[001 234 5]

You can use reshape() to reshape your array. For example, you can reshape
this array to an array with three rows and two columns:

Input:

b = a.reshape(3,2)
print (b)

Output:

With np.reshape, you can specify a few optional parameters:

Input:

numpy.reshape (a, newshape, order)

a is the array to be reshaped.

newshape is the new shape you want. You can specify an integer or a tuple
of integers. If you specify an integer, the result will be an array of that
length. The shape should be compatible with the original shape.

order: ‘C’ means to read/write the elements using C-like index order, ‘F’
means to read/write the elements using Fortran-like index order, ‘A’ means
to read/write the elements in Fortran-like index order if a is Fortran
contiguous in memory, C-like order otherwise. (This is an optional
parameter and doesn’t need to be specified.)

Learn more about shape manipulation here.

How to convert a 1D array into a 2D array (how to
add a new axis to an array)

np.newaxis
np.expand dims

You can use np.newaxis and np.expand_dims to increase the dimensions
of your existing array.

Using np.newaxis will increase the dimensions of your array by one
dimension when used once. This means that a 1D array will become a 2D

array, a 2D array will become a 3D array, and so on.

For example, if you start with this array:

a = np.array([1, 2, 3, 4, 5, 6])
a.shape

Output:

You can use np.newaxis to add a new axis:

Input:

a2 = a[np.newaxis]
a2.shape

Output:

You can explicitly convert a 1D array with either a row vector or a column
vector using np.newaxis. For example, you can convert a 1D array to a row

vector by inserting an axis along the first dimension:

Input:

row vector = al[np.newaxis, :]
row_vector.shape

Output:

Or, for a column vector, you can insert an axis along the second dimension:

Input:

col vector = al:, np.newaxis]
col vector.shape

Output:

You can also expand an array by inserting a new axis at a specified position

with np.expand_dims.

For example, if you start with this array:

And to find the shape of your array, run:

Input:

array example.shape
Output:

(3,2,4)

Read more about dimensions here, size here, and shape here.

Can you reshape an array?

np.reshape ()

Yes!

gif via giphy

Using np.reshape() will give a new shape to an array without changing the
data. Just remember that when you use the reshape method, the array you

Input:

a = np.array([1l, 2, 3, 4, 5, 6])
a.shape

Output:

You can use np.expand_dims to add an axis at index position 1 with:

Input:

b = np.expand dims(a, axis=l)
b.shape

Output:

You can add an axis at index position 0 with:

Input:

c = np.expand dims(a, axis=0)
c.shape

Output:

Find more information about newaxis here and expand_dims here.

g L] |E

F N

Photo by mentatdgt from Pexels

Indexing and slicing

You can index and slice NumPy arrays in the same ways you can slice
Python lists.

Input:

data = np.array([1,2,3])

print (datal0])
print (datall])
print (data[0:2])

print (datal[l:])
print (data[-2:])

Output:

—_— N e
N

w N

You can visualize it this way:

data[@0] data[l] data[©:2] data[l:] 0 data[-2:]
1 il 1
1
Z 2 2 2
2
3 3
3

You may want to take a section of your array or specific array elements to
use in further analysis or additional operations. To do that, you'll need to
subset, slice, and/or index your arrays.

If you want to select values from your array that fulfill certain conditions,
it’s straightforward with NumPy.

For example, if you start with this array:

a = np.array([[1 , 2, 3, 41, I[5, 6, 7, 81, [9, 10, 11, 1211)

You can easily print all of the values in the array that are less than 5.

Input:

print (afa<b])

=2

Output:

[1 2 3 4]

You can also select, for example, numbers that are equal to or greater than
5, and use that condition to index an array.

Input:

five up = (a >= 5)
print (a[five upl])

Output:

[5 6 7 8 910 11 12]

You can select elements that are divisible by 2:

Input:

divisible by 2 = a[a%2==0]
print (divisible by 2)

Output:

[2 4 6 8 10 12]

Or you can select elements that satisfy two conditions using the & and |
operators:

Input:

c =al(a>2) & (a < 11)]
print (c)

Output:

[3 4 5 6 7 8 9 10]

While it would be incredibly inefficient for this array, you can also make use
of the logical operators & and | in order to return boolean values that
specify whether or not the values in an array fulfill a certain condition. This

can be useful with arrays that contain names or other categorical values.

Input:

five up = (array > 5) | (array ==
print (five up)

Output:

[[False False False False]
[True True True True]
[True True True Truel]]

You can also use np.where() to select elements or indices from an array.
Starting with this array:

Input:

a = np.array([[1 , 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

You can use np.where() to print the indices of elements that are, for
example, less than 5:

Input:

b = np.where (a<b)
print (b)

Output:

In this example, a tuple of arrays was returned: one for each dimension.
The first array represents the row indices where these values are found, and
the second array represents the column indices where the values are found.

If you want to generate a list of coordinates where the elements exist, you
can zip the arrays, iterate over the list of coordinates, and print them. For

example:

Input:

list of coordinates= list(zip(b[0], b[1]))

for cord in list of coordinates:
print (cord)

Output:

[eNeoNeNe}
~
w N PO

You can also use np.where() to print the elements in an array that are less
than 5 with:

Input:

print (a[b]l)

Output:

[1 2 3 4]

If the element you're looking for doesn’t exist in the array, then the returned
array of indices will be empty. For example:

Input:

not there = np.where(a == 42)
print (not there)

Output:

(array([], dtype=int64), array([], dtype=int64))

Learn more about indexing and slicing here and here.

Read more about using the where function here.

Photo by Dazzle Jam from Pexels

How to create an array from existing data

slicing and indexing

np.vstack()
np.hstack()
np.hsplit ()

.view ()
.copy ()

You can easily use create a new array from a section of an existing array.
Let’s say you have this array:

array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

You can create a new array from a section of your array any time by
specifying where you want to slice your array.

Input:

arrl = array([3:8]
arrl

Output:

Here, you grabbed a section of your array from index position 3 through
index position 8.

You can also stack two existing arrays, both vertically and horizontally. Let’s
say you have two arrays:

a_1:
array ([[1, 11,
[2, 211)
and a_2:
array ([[3, 31,
[4, 411)

You can stack them vertically with vstack:

Input:

np.vstack((a 1, a 2))

Output:

Or stack them horizontally with hstack:

Input:

np.hstack((a 1, a 2))

Output:

You can split an array into several smaller arrays using hsplit. You can
specify either the number of equally shaped arrays to return or the columns
after which the division should occur.

Let’s say you have this array:

array(([1, 2, 3, 4, 5 6 7, 8, 9,10, 11, 12],
[13, 14, 15, 1le, 17, 18, 19, 20, 21, 22, 23, 24]1])

If you wanted to split this array into three equally shaped arrays, you would
run:

Input:
np.hsplit (array, 3)

Output:

If you wanted to split your array after the third and fourth column, you’d
run:

Input:
np.hsplit (array, (3,4))
Output:

e, 2, 31,

[13, 14, 151]), array([[4],

(16l11), array(tf 5, 6, 7, 8, 9,10, 11, 12],
[17, 18, 19, 20, 21, 22, 23, 24]])]

Learn more about stacking and splitting arrays here.

You can use the view method to create a new array object that looks at the
same data as the original array (a shallow copy)

Let’s say you create this array:

Input:
a = np.array([[1 , 2, 3, 41, [5, 6, 7, 81, [9, 10, 11, 12]1]

You can create a new array object that looks at the same data using:

Input:
b = a.view()

Using the copy method will make a complete copy of the array and its data
(a deep copy). To use this on your array, you could run:

Input:
c = a.copy()

Learn more about copies and views here.

Basic array operations

Addition, subtraction, multiplication, division, and more!

Once you've created your arrays, you can start to work with them. Let’s say,
for example, that you've created two arrays, one called “data” and one
called “ones”

al e e

uava ones

1 il
data = np.array([1,2]) ones = np.ones(2)
2 1

You can add the arrays together with the plus sign.

data + ones

data ones
1 1 2
data + ones = + =
2 1 3

You can, of course, do more than just addition!

data - ones
data * data
data / data

data ones data data data
1 1 0 1 1 1 1
- - * = ;”
2 1 1 2 2 4 2

Basic operations are simple with NumPy. If you want to find the sum of the
elements in an array, you’d use sum(). This works for 1D arrays, 2D arrays,

and arrays in higher dimensions.

Input:

a = np.array([1l, 2, 3, 4])

Add all of the elements in the array
a.sumf()

Output:

10

To add the rows or the columns in a 2D array, you would specify the axis.

If you start with this array:

Input:

b = np.array([[1, 11, [2, 2]])

You can sum the rows with:

Input:

b.sum(axis=0)

Output:

array ([3, 3])

You can sum the columns with:

Input:

b.sum(axis=1)

Output:

array ([2, 41])

Learn more about basic operations here.

Broadcasting

There are times when you might want to carry out an operation between an
array and a single number (also called an operation between a vector and a
scalar) or between arrays of two different sizes. For example, your array
(we’ll call it “data”) might contain information about distance in miles but
you want to convert the information to kilometers. You can perform this

operation with:
data * 1.6
1
* 1.6 = * =
2

NumPy understands that the multiplication should happen with each cell.
That concept is called broadcasting. Broadcasting is a mechanism that
allows NumPy to perform operations on arrays of different shapes. The
dimensions of your array must be compatible, for example, when the
dimensions of both arrays are equal or when one of them is 1. If the
dimensions are not compatible, you will get a value error.

Learn more about broadcasting here.

More useful array operations

Maximum, minimum, sum, mean, product, standard deviation, and more

1.6

3.2

NumPy also performs aggregation functions. In addition to min, max, and

sum, you can easily run mean to get the average, prod to get the result of

multiplying the elements together, std to get the standard deviation, and

more.
data.max ()
data.min ()
data.sum()
data data
1 1

.max() = . .min() = 1

Let’s start with this array, called “A”

[[0.45053314 0.17296777 0.34376245 0.5510652]
[0.54627315 0.05093587 0.40067661 0.55645993]
[0.12697628 0.82485143 0.26590556 0.56917101]]

data

.sum() = n

It’s very common to want to aggregate along a row or column. By default,

every NumPy aggregation function will return the aggregate of the entire

array. To find the sum or the minimum of the elements in your array, run:

Input:

A.sum()

Or

A.min ()

Output:

Sum
4.8595783866706

Minimum
0.050935870838424435

You can specify on which axis you want the aggregation function to be
computed. For example, you can find the minimum value within each

column by specifying axis=0.

Input:
A.min (axis=0)
Output:
array([0.12697628, 0.05093587, 0.26590556, 0.5510652 1)

The four values listed above correspond to the number of columns in your

array. With a four-column array, you will get four values as your result.

Read more about functions here and calculations here.

How to inspect the size and shape of a NumPy
array

np.shape ()
np.size()

You can get the dimensions of a NumPy array any time using
ndarray.shape. NumPy will return the dimensions of the array as a tuple.

For example, if you create this array:

Input:

np arr = np.array([[1 , 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

You can use np.shape to find the shape of your array.

Input:

np_arr.shape

Output:

This output tells you that your array has three rows and four columns.

You can find just the number of rows by specifying [0]:

Input:

num of rows = np arr.shape[0]

print ('Number of Rows : ', num of rows)
Output:

Number of Rows : 3

Or just the number of columns by specifying [1]:

Input:
num of columns = np arr.shape[1l]
print ('Number of Columns : ', num of columns)

Output:

Number of Columns : 4

It’s also easy to find the total number of elements in your array:

Input:

print (np _arr.shape[0] * np arr.shape[l])

Output:

12

You can use np.shape() with a 1D array as well. If you create this array:

Input:

arr = np.array([1l, 2, 3, 4, 5, 6, 7, 81])

You can print the shape and the length of the array.

print ('Shape of 1D array: ', arr.shape)
print ('Length of 1D array: ', arr.shape[0])

Output:

Shape of 1D array: (8,)
Length of 1D array: 8

You can get the dimensions of an array using np.size().

Input:

get number of rows in array
num of rows2 = np.size(np arr, 0)

get number of columns in 2D numpy array

num of columns2 = np.size(np arr, 1)

print ('Number of Rows : ', num of rows2)

print ('Number of Columns : ', num of columns2)
Output:

Number of Rows : 3

Number of Columns: 4

You can print the total number of elements as well:

Input:

print ('Total number of elements in array : ', np.size(np arr))
Output:

Total number of elements in array : 12

This also works for 3D arrays:

Input:

arr3D = np.array ([,
(4, 4, 4, 41, [5, 5, 5, 51, [6, 6, 6, 6]]

You can easily print the size of the axis:

Input:
print ("Axis 0 size : ', np.size(arr3D, 0))
print ('"Axis 1 size : ', np.size(arr3D, 1))
print ('Axis 2 size : ', np.size(arr3D, 2))

Output:

Axis 0 size : 2
Axis 1 size : 3
Axis 2 size : 4

You can print the total number of elements:

Input:

print (np.size (arr3D))

Output:

24

You can also use np.size() with 1D arrays:

Input:

Create a 1D array
arr = np.array([1l, 2, 3, 4, 5, 6, 7, 81)

Determine the length

print ('Length of 1D numpy array : ', np.size(arr))
Output:
Length of 1D numpy array : 8

Remember that if you check the size of your array and it equals 0, your array is

empty.

Learn more about finding the size of an array here and the shape of an
array here.

Creating matrices

You can pass Python lists of lists to create a matrix to represent them in
NumPy.

np.array ([[1,2],[3,4]])

1 |2
np.array([(1,2],(3,411) > i

Indexing and slicing operations are useful when you’re manipulating

matrices:
data[0,1]
data[1l:3]
data[0:2,0]
data data[o,1] data[l1l:3] data[e:2,0]
0 1 e 1 o 1 ° 1
n| 1 2 0 2 0 0 1|
1 1]
2 2

You can aggregate matrices the same way you aggregated vectors:

data.max ()
data.min ()
data.sum()

You can aggregate all the values in a matrix and you can aggregate them

across columns or rows using the axis parameter:

data.max (axis=0)
data.max (axis=1)

Once you've created your matrices, you can add and multiply them using

arithmetic operators if you have two matrices that are the same size.

data + ones

You can do these arithmetic operations on matrices of different sizes, but
only if one matrix has only one column or one row. In this case, NumPy will
use its broadcast rules for the operation.

data + ones_ row

data

1 2 ones_row

data + ones_row =

Be aware that when NumPy prints N-Dimensional arrays, the last axis is
looped over the fastest while the first axis is the slowest. That means that:

Input:

np.ones ((4,3,2))

Will print out like this:

Output:

<
=

i
N
—

There are often instances where we want NumPy to initialize the values of
an array. NumPy offers methods like ones(), zeros(), and
random.random() for these instances. All you need to do is pass in the
number of elements you want it to generate.

np.ones (3)
mp.zeros (3)
np.random.random((3)

1) 0.5967

np.ones{(3) + 1 np.zeros(3) * (%] np.random. random(3) * 0.0606

1 %] 0.2223

Read more about initializing the values of an array with ones here, zeros
here, and initializing empty arrays here.

Generating random numbers

The use of random number generation is an important part of the
configuration and evaluation of machine learning algorithms. Whether you
need to randomly initialize weights in an artificial neural network, split
data into random sets, or randomly shuffle your dataset, being able to
generate random numbers (actually, repeatable pseudo-random numbers)

is essential.

You have a number of options when using NumPy for random number
generation. Random Generator is NumPy’s replacement for
RandomState. The main difference between them is that Generator relies
on an additional BitGenerator to manage state and generate the random
bits, which are transformed into random values.

With Generator.integers, you can generate random integers from low
(remember that this is inclusive with NumPy) to high (exclusive). You can
set endopoint=True to make the high number inclusive.

You can generate a 2 x 4 array of random integers between 0 and 4 with

Input:

rng.integers (5, size=(2, 4))

Output:

You can also use the ones(), zeros(), and random() methods to create an
array if you give them a tuple describing the dimensions of the matrix.

np.ones (3, 2)
mp.zeros (3,2)
np.random.random((3, 2)

e
iz 1 (4] 2] 8.37 0.88
np.ones((3,2)) *3 1 1 np.zeros((3,2)) * %] a np.random.random((3,2)) » 0.75 8.79
Ak Ll e 0 0.63 0.16

Read more about Random Generator here.

How to get unique items and counts

np.unique ()

You can find the unique elements in an array easily with np.unique.

For example, if you start with this array:

Input:

a = np.array((11, 11, 12, 13, 14, 15, 1le¢, 17, 12, 13, 11, 14, 18, 19,
201)

you can use np.unique

Input:

unique values = np.unique (a)
print (unique values)

Output:

[11 12 13 14 15 16 17 18 19 20]

To get the indices of unique values in a NumPy array (an array of first index
positions of unique values in the array), just pass the return_index
argument in np.unique() as well as your array.

Input:

indices list = np.unique(a, return index=True)
print (indices list)

Output:

[0 2 3 4 5 6 712 13 14]

You can pass the return counts argument in np.unique() along with your

array to get the frequency count of unique values in a NumPy array.

Input:

unique values, occurrence count = np.unique(a, return counts=True)
print (occurrence count)

Output:

[3222111111]

This also works with 2D arrays. If you start with this array:

az2b = np.array([[1, 2, 3, 4] ,[5, 6, 7, 81 , [9, 10, 11, 121, [1, 2,
3, 411)

You can find unique values with:

Input:

unique values = np.unique (a2D)
print (unique values)

Output:

[1 2 3 4 5 6 7 8 910 11 12]

If the axis argument isn’t passed, your 2D array will be flattened.

To get the unique rows or columns, make sure to pass the axis argument. To
find the unique rows, specify axis=0 and for columns, specify axis=1.

Input:

unique rows = np.unique (a2D, axis=0)
print (unique rows)

Output:

[[1 2 3 4]
[5 6 7 8]
[910 11 12]]

To get the unique rows, occurrence count, and index position, you can use:

Input:

axis=0,

unique rows, occurence count, indices = np.unique (a2D,
return counts=True, return index=True)

print ('Unique Rows: ', '\n', unique rows)
print ('Occurrence Count:', '\n', occurence_count)
print ('Indices: ', '\n', indices)

Output:

Unique Rows:

[1 2 3 4]
[5 6 7 8]
[910 11 12]]
Occurrence Count:
[0 1 2]
Indices:
[2 1 1]

Learn more about finding the unique elements in an array here.

Transposing and reshaping a matrix

np.reshape ()
np.transpose ()
np.T()

It’s common to need to rotate your matrices. NumPy arrays have the

property T that allows you to transpose a matrix.

You may also need to switch the dimensions of a matrix. This can happen
when, for example, you have a model that expects a certain input shape
that is different from your dataset. This is where the reshape method can be
useful. You simply need to pass in the new dimensions that you want for the
matrix.

data.reshape (2, 3)
data.reshape (3, 2)

You can also use np.transpose to reverse or change the axes of an array
according to the values you specify.

If you start with this array:

arr = np.arange (6) .reshape ((2,3))
arr

You can transpose your array with np.transpose().

Input:
np.transpose (arr)
Output:

array (

[
(1, 4],
2

[0, 31,
¢+ 511)

Learn more about transposing a matrix here and reshaping a matrix here.

How to reverse an array

np.flip

NumPy’s np.flip() function allows you to flip, or reverse, the contents of an
array along an axis. When using np.flip, specify the array you would like to
reverse and the axis. If you don’t specify the axis, NumPy will reverse the
contents along all of the axes of your input array.

Reversing a 1D array

If you begin with a 1D array like this one:
arr = np.array([l, 2, 3, 4, 5, 6, 7, 8])
You can reverse it with:
reversed arr = np.flip(arr)

If you want to print your reversed array, you can run:

Input:

print ('Reversed Array: ', reversed arr)

Output:

Reversed Array: [87 6 5432 1]

Reversing a 2D array

A 2D array works much the same way.

If you start with this array:

Input:

arr2D = np.array([[1 , 2, 3, 41, [5, 6, 7, 81, [9, 10, 11, 1211)

You can reverse the content in all of the rows and all of the columns with:

Input:

reversed arr = np.flip(arr2D)

print ('Reversed Array: ')
print (reversed arr)

Output:

Reversed Array:

[[12 11 10 9]
[8 7 6 5]
[4 3 2 11]

You can easily reverse only the rows with:

Input:

reversed arr rows = np.flip(arr2D, axis=0)

print ('Reversed Array: ')
print (reversed arr rows)

Output:

Reversed Array:

[[9 10 11 12]
[5 6 7 8]
[1 2 3 47]]

Or reverse only the columns with:

Input:

reversed arr columns = np.flip(arr2D, axis=1)

print ('Reversed Array columns: ')
print (reversed arr columns)

Output:

Reversed Array columns:

[[4 3 2 1]
[8 7 6 5]
[12 11 10 9]1]

You can also reverse the contents of only one column or row. For example,
you can reverse the contents of the row at index position 1 (the second
TOW):

Input:

arr2D[1] = np.flip(arr2D[1])

print ('Reversed Array: ')
print (arr2D)

Output:

Reversed Array:
[r1T 2 3 4]
[5 6 7 8]
[910 11 12]

You can also reverse the column at index position 1 (the second column):

Input:

arr2D[:,1] = np.flip(arr2D[:,1])

print ('Reversed Array: ')
print (arr2D)

Output:

Reversed Array:

[[1 10 3 4]
[5 6 7 8]
[9 2 11 12]]

Read more about reversing arrays here.

Reshaping and flattening multidimensional
arrays

.flatten ()
.ravel ()

There are two popular ways to flatten an array: .flatten() and .ravel(). The
primary difference between the two is that the new array created using
ravel() is actually a reference to the parent array. This means that any
changes to the new array will affect the parent array as well. Since ravel
does not create a copy, it’s memory efficient.

If you start with this array:

array = np.array([[1 , 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

You can use flatten to flatten your array into a 1D array.

Input:

array.flatten()

Output:

array([1, 2, 3, 4, 5 6, 7, 8 9, 10, 11, 12])

When you use flatten, changes to your new array won’t change the parent
array.

For example:

Input:

al = array.flatten()
al[0] = 100

print ('Original array: ')
print (array)

print ('New array: ')
print (al)

Output:

Original array:

[[1 2 3 4]
[5 6 7 8]
[910 11 12]]

New array:
[100 2 3 4 5 6 7 8 9 10 11 12]

But when you use rank, the changes you make to the new array will affect

the parent array.

For example:

Input:

a2 = array.ravel ()
a2[0] = 101

print ('Original array: ')
print (array)

print ('New array: ')
print (a2)

Output:

Original array:
[[101 2 3 4]
[5 6 7 8]
[9 10 11 12]]
New array:
[101 2 3 4 5 6 7 8 9 10 11 12]

Read more about flatten here and ravel here.

How to access the docstring for more
information

help ()
2

?7?

When it comes to the data science ecosystem, Python and NumPy are built
with the user in mind. One of the best examples of this is the built-in access
to documentation. Every object contains the reference to a string, which is
known as the docstring. In most cases, this docstring contains a quick and
concise summary of the object and how to use it. Python has a built-in
help() function that can help you access this information. This means that
nearly any time you need more information, you can use help() to quickly
find the information that you need.

For example,

help (max)

Will return

Help on built-in function max in module builtins:

max(...)
max (iterable, *[, default=obj, key=func]) -> value
max (argl, arg2, *args, *[, key=func]) -> value

With a single iterable argument, return its biggest item. The
default keyword-only argument specifies an object to return if
the provided iterable is empty.

With two or more arguments, return the largest argument.

Because access to additional information is so useful, IPython uses the ?
character as a shorthand for accessing this documentation along with other

relevant information.

For example,

max?

Will return

Docstring:
max (iterable, *[, default=obj, key=func]) -> value
max (argl, arg2, *args, *[, key=func]) -> value

With a single iterable argument, return its biggest item. The
default keyword-only argument specifies an object to return if
the provided iterable is empty.

With two or more arguments, return the largest argument.

Type: builtin function or method

You can even use this notation for object methods and objects themselves.

Let’s say you create this array:

a = np.array([1l, 2, 3, 4, 5, 6])

Running

ar

Will return a lot of useful information.

Type: ndarray

String form: [1 2345 6]

Length: ©

File: ~/anaconda3/1lib/python3.7/site-
packages/numpy/ init .py

Docstring: <no docstring>

Class docstring:
ndarray (shape, dtype=float, buffer=None, offset=0,
strides=None, order=None)

An array object represents a multidimensional, homogeneous array

of fixed-size items. An associated data-type object describes the
format of each element in the array (its byte-order, how many bytes
it

occupies in memory, whether it is an integer, a floating point
number,

or something else, etc.)

Arrays should be constructed using “array’, ‘zeros or ‘empty (refer
to the See Also section below). The parameters given here refer to
a low-level method ('ndarray(...)) for instantiating an array.

For more information, refer to the "numpy’ module and examine the
methods and attributes of an array.

Parameters

(for the new method; see Notes below)

shape : tuple of ints
Shape of created array.
dtype : data-type, optional
Any object that can be interpreted as a numpy data type.
buffer : object exposing buffer interface, optional
Used to fill the array with data.
offset : int, optional
Offset of array data in buffer.
strides : tuple of ints, optional
Strides of data in memory.
order : {'C', 'F'}, optional
Row-major (C-style) or column-major (Fortran-style) order.

Attributes
T : ndarray
Transpose of the array.
data : buffer
The array's elements, in memory.
dtype : dtype object
Describes the format of the elements in the array.
flags : dict
Dictionary containing information related to memory use, e.g.,
'C_CONTIGUOUS', 'OWNDATA', 'WRITEABLE', etc.
flat : numpy.flatiter object
Flattened version of the array as an iterator. The iterator
allows assignments, e.g., ~"x.flat = 3°° (See "ndarray.flat® for
assignment examples; TODO) .
imag : ndarray
Imaginary part of the array.
real : ndarray
Real part of the array.
size : int
Number of elements in the array.
itemsize : int
The memory use of each array element in bytes.
nbytes : int
The total number of bytes required to store the array data,
i.e., "~ Titemsize * size "
ndim : int
The array's number of dimensions.
shape : tuple of ints
Shape of the array.

strides : tuple of ints
The step-size required to move from one element to the next in

memory. For example, a contiguous "~ (3, 4) ° array of type

"Tintl6’ " in C-order has strides "~ (8, 2) . This implies that

to move from element to element in memory requires jumps of 2
bytes.

To move from row-to-row, one needs to jump 8 bytes at a time

(2 x4y,

ctypes : ctypes object
Class containing properties of the array needed for interaction
with ctypes.
base : ndarray
If the array is a view into another array, that array is its
‘base”
(unless that array is also a view). The ‘base’ array is where
the
array data is actually stored.

See Also
array : Construct an array.
zeros : Create an array, each element of which is zero.
empty : Create an array, but leave its allocated memory unchanged
(i.e.,
it contains "garbage") .
dtype : Create a data-type.

There are two modes of creating an array using °° new

1. If “buffer® is None, then only “shape’, “dtype’, and “order"
are used.

2. If "buffer® is an object exposing the buffer interface, then
all keywords are interpreted.

No "° init " method is needed because the array is fully
initialized

after the °° new "’ method.

Examples

These examples illustrate the low-level ‘ndarray constructor. Refer
to the 'See Also’ section above for easier ways of constructing an
ndarray.

First mode, ‘buffer' is None:

>>> np.ndarray (shape=(2,2), dtype=float, order='F"')
array([[-1.13698227e+002, 4.25087011e-3031,
[2.88528414e-306, 3.27025015e-309]11) #random

Second mode:

>>> np.ndarray((2,), buffer=np.array([1l,2,3]),
offset=np.int () .itemsize,

Ce dtype=int) # offset = l*itemsize, i.e. skip first
element
array([2, 31)

This also works for functions and other objects that you create. Just
remember to include a docstring with your function using a string literal

(“““ €€

or ” “” around your documentation).

For example, if you create this function:

def double(a):
'"'"Return a * 2'"!'
return a * 2

You can run:

double?

Which will return:

Signature: double (a)

Docstring: Return a * 2

File: ~/Desktop/<ipython-input-23-b5adf20be596>
Type: function

You can reach another level of information by reading the source code of
the object you're interested in. Using a double question mark (??) allows
you to access the source code.

For example, running:

double??

Will return:

Signature: double (a)
Source:
def double(a):
''"'"Return a * 2'"!'
return a * 2
File: ~/Desktop/<ipython-input-23-b5adf20be596>
Type: function

If the object in question is compiled in a language other than Python, using
?? will return the same information as ?. You’ll find this with a lot of built-in
objects and types, for example:

len?

Output:

Signature: len (obj, /)
Docstring: Return the number of items in a container.
Type: builtin function or method

and
len??
Output:

Signature: len(obj, /)
Docstring: Return the number of items in a container.
Type: builtin function or method

Have the same output because they were compiled in a programming
language other than Python.

Working with mathematical formulas

Implementing mathematical formulas that work on arrays is one of the
things that make NumPy so highly regarded in the scientific Python

community.

For example, this is the mean square error formula (a central formula used

in supervised machine learning models that deal with regression):

Implementing this formula is simple and straightforward in NumPy:

What makes this work so well is that predictions and labels can contain one

or a thousand values. They only need to be the same size.

You can visualize it this way:

In this example, both the predictions and labels vectors contain three
values, meaning n has a value of three. After we carry out subtractions the
values in the vector are squared. Then NumPy sums the values, and your
result is the error value for that prediction and a score for the quality of the
model.

How to save and load NumPy objects

np.save ()
np.savez()
np.savetxt ()
np.load()
np.loadtxt ()

You will, at some point, want to save your arrays to disk and load them back
without having to re-run the code. Fortunately, there are several ways to
save and load objects with Numpy. The ndarray objects can be saved to and
loaded from the disk files with loadtxt and savetxt functions that handle
normal text files, load and save functions that handle NumPy binary files
with a .npy file extension, and a savez function that handles NumPy files
with a .npz file extension.

The .npy and .npz files store data, shape, dtype, and other information
required to reconstruct the ndarray in a way that allows the array to be
correctly retrieved, even when the file is on another machine with different
architecture.

If you want to store a single ndarray object, store it as a .npy file using
np.save. If you want to store more than one ndarray object in a single file,
save it as a .npz file using np.savez. You can also save several arrays into a
single file in compressed npz format with np.savez_compressed.

It’s easy to save and load and array with np.save(). Just make sure to

specify the array you want to save and a file name. For example, if you
create this array:

a = np.array([1, 2, 3, 4, 5, 6])

You can save it as “filename.npy” with

np.save ('filename',a)

You can use np.load() to reconstruct your array.

b = np.load('filename.npy"')

If you want to check your array, you can run:

Input:

print (b)

Output:

[1 2345 6]

You can save a NumPy array as a plain text file like a .csv or .txt file with

np.savetxt.

For example, if you create this array:

csv_arr = np.array([1l, 2, 3, 4, 5, 6, 7, 8])

You can easily save it as a .csv file with the name “new_file.csv” like this:

np.savetxt ('new file.csv', csv_arr)

You can quickly and easily load your saved text file using loadtxt():

Input:

np.loadtxt ('new file.csv')

Output:

The savetxt() and loadtxt() functions accept additional optional
parameters such as header, footer, and delimiter. While text files can be
easier for sharing, .npy and .npz files are faster to retrieve. If you need more

sophisticated handling of your text file (for example, if you need to work
with lines that contain missing values), you will want to use the
genfromtxt function.

With savetxt, you can specify headers, footers, comments, and more. Read
more about savetxt here.

You can read more about save here, savez here, and load here. You can
read more about savetxt here, and loadtxt here.

Learn more about input and output routines here.

Be aware that loading files that contain object arrays with np.load() uses
the pickle module which is not secure against erroneous or maliciously
constructed data. Consider passing allow pickle=False toload data thatis

known not to contain object arrays for the safer handling of untrusted

sources.

Importing and exporting a CSV

It’s simple to read in a CSV that contains existing information. The best and
easiest way to do this is to use Pandas.

import pandas as pd

If all of your columns are the same type:
x = pd.read csv('music.csv') .values

You can also simply select the columns you need:
x = pd.read csv('music.csv', columns=['float colname 1', ...]).values

music.csv pandas.read_csv(‘music.csv’')

Woikbiok

e R = : & Artist Gonre Listenars Plays
B Corcitimal boemarming * (e=i
- b g 2&. worgnlEntodon :, 9:,, L] Billie Holiday Jazz 1,300,000 27,000,000
= o el Sres v
Fii fe
A ! = o 1 Jimi Hendrix Rock 2,700,000 70,000,000

1 Artlst Genre Listeners Plays +

2 Billie Holiday Jazz 1,300,000 27,000,000

3 Jimi Hendrix Rock 2,700,000 70,000,000 2 Miles Davis Jazz 1,500,000 48,000,000
4 Miles Davis Jazz 1,500,000 48,000,000

5 [5lA Pop 2,000,000 74,000,000

6 3 Sl Pop 2,000,000 74,000,000
4 & Shewi | +

et Bl W - — — & mm

It’s simple to use Pandas in order to export your array as well. If you are

new to NumPy, you may want to create a Pandas dataframe from the values

in your array and then write the data frame to a CSV file with Pandas.

If you created this array “a”

[[-2.58289208, 0.43014843, -1.24082018, 1.59572603],
[0.99027828, 1.17150989, 0.94125714, -0.14692469],
[0.76989341, 0.81299683, -0.95068423, 0.11769564],
[0.20484034, 0.34784527, 1.96979195, 0.51992837]]

You could create a Pandas dataframe

df = pd.DataFrame (a)
print (df)

a 1 2 3
-2.362892 D0.430146 -1.240820 1.595726
0.990278 1.171510 0Q.941257 -0,146925
0.769893 D0.B1Z997 -0.9506E4 0.117696
a.

o
1
2
3 204840 D0.34TH45 1.969792 D0.5199Z6

You can easily save your dataframe with
df.to csv('pd.csv')

And read your CSV with
pd.read csv('pd.csv')

Unmamesd: 0] 1 2 3

0 -2582882 0430148 -1.240820 1.585726
1 DEs02TE 1.1T1510 0841267 -D.146926
2 0765893 0812007 -0.950684 0117606
3 0204840 0347845 10869702 0510028

w B o= o

You can also save your array with the NumPy “savetxt” method.

np.savetxt('np.csv', a, fmt='%.2f', delimiter=',', header=" 1, 2,
3, 4")

Read your saved CSV any time with a command such as

Input:
cat np.csv
Output:

1, 2, 3, 4
-2.58,0.43,-1.24,1.60
0.99,1.17,0.94,-0.15
0.77,0.81,-0.95,0.12
0.20,0.35,1.97,0.52

If you're interested in learning more about Pandas, take a look at the official
Pandas website. Learn how to install Pandas with the official Pandas

installation information.

Plotting arrays with Matplotlib

If you need to generate a plot for your values, it’s very simple with
Matplotlib.

For example, you may have an array like this one:
A = np.array([2, 1, 5, 7, 4, 6, 8, 14, 10, 9, 18, 20, 22])
If you already have Matplotlib installed, you can import it with

import matplotlib.pyplot as plt

If you're using Jupyter Notebook, you may also want to run the
following line of code

to display your code in the notebook

%matplotlib inline

All you need to do to plot your values is run

Input:

plt.plot(
plt.show(

)

~ >

Output:

01
~
S
o
=]
1

For example, you can plot a 1D array like this:

Input:

x = np.linspace (0, 5, 20)
y = np.linspace (0, 10, 20)
plt.plot(x, y, 'purple') # line
plt.plot(x, y, 'o") # dots

10 1

[

=
[YE
kS
w

With Matplotlib, you have access to an enormous number of visualization

options.

from mpl toolkits.mplot3d import Axes3D

fig = plt.figure()

ax = Axes3D(fig)

X = np.arange (-5, 5, 0.15)
Y = np.arange (-5, 5, 0.15)
X, Y = np.meshgrid(X, Y)
R = np.sqrt (X**2 + Y**2)

Z = np.sin(R)

ax.plot surface (X, Y, Z, rstride=l, cstride=1, cmap='viridis')

plt.colorbar ()

To read more about Matplotlib and what it can do, take a look at the official
documentation. For directions regarding installing Matplotlib, see the
official installation section.

You made it! Congratulations!!!

Thanks for reading! If there’s anything you feel should be included here,
please let me know. Feel free to leave a comment below or reach out any
time on LinkedIn or Twitter. If you want to read more of my tutorials, take a
look through my profile here on Medium: Anne Bonner Q)

.-

= .

i -

Photo by Asya Cusima from Pexels

Sign up for The Daily Pick
By Towards Data Science

Hands-on real-world examples, research, tutorials, and cutting-edge techniques
delivered Monday to Thursday. Make learning your daily ritual. Take a look

Create a free Medium account to get The Daily Pick in
your inbox.

Programming Data Science Machine Learning Artificial Intelligence Python

